+7 (8342) 473-813 Отдел продаж
ВОК: optic@sarko.ru
ОКГТ: opgw@sarko.ru
Трубы: tube@sarko.ru
EN

Физики СПбГУ повысили эффективность суперконденсаторов за счет углеродных нанотрубок и оксидов переходных металлов

Коллектив ученых Санкт-Петербургского университета и Омского научного центра Сибирского отделения РАН создал композитный материал из многослойных углеродных нанотрубок, оксида марганца и рения. Полученный материал позволит повысить энергоэффективность суперконденсаторов, используемых в альтернативной энергетике.

Углеродные нанотрубки — перспективный материал, представляющий собой углеродную цилиндрическую структуру, созданную из графена (углеродной решетки). Нанотрубки отличаются высокой прочностью и плотностью, при этом их толщина менее человеческого волоса. Можно сказать, что это «материалы будущего», ведь при добавлении небольших объемов вещества (всего 1–3 % от общего объема) в определенную среду нанотрубки способны значительно улучшать характеристики этой среды. Так, проводились эксперименты по добавлению нанотрубок в дорожное покрытие, автомобильные покрышки, литий-ионные аккумуляторы и даже в бумагу. В результате вещество стало более прочным и эффективным.

Результаты исследования опубликованы в швейцарском научном журнале Applied Sciences.

Нанотрубки бывают одностенные и многослойные. Одностенные имеют одномерную структуру, тогда как многослойные состоят из нескольких концентрически связанных углеродных нанотрубок. Они могут быть длиной всего несколько микрометров (для сравнения диаметр человеческого волоса равен примерно 50 микрометрам) с диаметром менее 100 нанометров (практически незаметная для глаза величина — в одном сантиметре 10 миллионов нанометров). Многослойные нанотрубки лучше проводят ток, а их поверхность химически инертна, то есть не позволяет запускать какие-либо реакции. Все это позволяет предположить, что многослойные нанотрубки — наиболее выгодное вещество для использования при производстве суперконденсаторов, литий-ионных аккумуляторов и других элементов.

Ученые СПбГУ разработали новые способы повышения эффективности суперконденсаторов за счет использования комбинации многослойных нанотрубок и оксидов переходных металлов. Один из подходов заключается в увеличении площади поверхности, обеспечивающей энергетическую эффективность электрода. Обычно в качестве основы электродов промышленных суперконденсаторов используют различные виды углерода (сажа, активированный углерод, технический углерод, графен, углеродные нанотрубки и другие варианты), обладающие высокой удельной площадью поверхности.

В последнее время для повышения энергоэффективности и стабильности суперконденсаторов ученые разрабатывают гибридные материалы, которые накапливают энергию как за счет двойного электрического слоя, так и благодаря обратимым электрохимическим процессам, протекающим на поверхности электродов при наличии, например, оксидов переходных металлов, таких как оксиды кобальта, ванадия, рутения и других. Как отмечает один из авторов разработки, научный сотрудник СПбГУ Петр Корусенко, сегодня перспективным вариантом таких переходных металлов являются оксиды марганца, обладающие высокой удельной емкостью, низкой токсичностью и себестоимостью производства.

Во время эксперимента ученые наносили на поверхность нанотрубок слои оксида марганца, затем проводили температурные обработки для кристаллизации и формирования наночастиц. Это позволило увеличить удельную емкость более чем в два раза, однако данный показатель быстро снижался. Повысить электрохимические свойства удалось за счет подбора оптимальной температуры обработки композита и последующего добавления оксида тяжелого метала рения, имеющего несколько степеней окисления, как и марганец. Как показали эксперименты, оксид рения закреплялся преимущественно вблизи наночастиц марганца и позволил увеличить долю электрохимически активного оксида марганца MnO2 путем доокисления MnOх.

Благодаря этому ученым удалось сделать материал более стабильным при циклических испытаниях заряда-разряда. Столь высокий результат обусловлен синергетическим эффектом, достигаемым за счет сочетания свойств оксидов марганца и рения, а также углеродных нанотрубок. С одной стороны, это приводит к увеличению вклада обратимых электрохимических процессов в удельную емкость, с другой — позволяет заметно увеличить вклад двойного электрического слоя при накоплении заряда.

Полученные учеными СПбГУ результаты позволят значительно повысить эффективность источников импульсной мощности, которые генерируют большое количество энергии в короткий срок. Сегодня суперконденсаторы используются в альтернативной энергетике, транспортных системах, накопителях энергии в домашних хозяйствах и других отраслях науки и техники. Повышение их энергоэффективности важно для многих сфер, поскольку генерация мощного импульса энергии — главная задача суперконденсаторов.