кабели и пассивное ОБОРУДОВАНИЕ

ВЛИЯНИЕ МОЛНИЙ на работу когерентных ВОЛС

С.Акопов, к.т.н., технический директор ООО "Корнинг СНГ", В.Конышев, к.ф.-м.н., руководитель научной группы ООО "Т8 НТЦ", О.Наний, д.ф.-м.н., профессор МГУ им. М.В.Ломоносова, начальник отдела ООО "Т8 НТЦ", В.Трещиков, к.ф.-м.н., генеральный директор ООО "Т8 НТЦ", ст. науч. сотр. Фрязинского филиала Института радиотехники и электроники им. В.А.Котельникова РАН, Р.Убайдуллаев, к.ф.-м.н., ведущий инженер ООО "Т8 НТЦ" / rru@t8.ru, И.Фролов, ведущий инженер-технолог ООО "Сарансккабель-Оптика"

УДК 621.315: 681.7.068, DOI: 10.22184/2070-8963.2021.96.4.24.30

Когерентные системы связи совершили революционный рывок в развитии волоконно-оптических DWDM сетей связи, многократно увеличив пропускную способность сетей и дальность безрегенерационной передачи. Однако оказалось, что удары молний, вызывающие быстрое вращение состояния поляризации световой волны, переносящей информационный сигнал, могут приводить к прерыванию работы когерентных ВОЛС на основе оптических кабелей, расположенных в грозотросе. Для устранения прерывания в работе когерентных систем связи из-за ударов молнии возможны два пути: разработка более скоростных цифровых систем обработки информации для когерентных приемников и разработка новых типов кабеля, наведенное магнитное поле в которых значительно меньше, чем в использующихся сегодня конструкциях кабелей.

Введение

Впервые влияние ударов молнии на работу волоконно-оптических линий связи (ВОЛС) воздушной прокладки, использующих оптические кабели в грозотросе (ОКГТ, англ. OPGW), было исследовано в работах М.Кигопо с коллегами [1, 2]. В статьях теоретически, экспериментально и с помощью прямых полевых измерений исследована динамика поляризации в момент удара молнии в грозотрос с оптическим кабелем (ОК). Отмечается, что удары молнии вызывают очень быстрые изменения поляризации, которые могут вызвать нарушение работы когерентных систем связи.

Анализ формы сигналов поляриметра показал, что поляризация изменяется с максимальной скоростью в течение короткого времени в несколько десятков мкс, что соответствует времени нарастания тока молнии. Самая большая величина зарегистрированного сдвига поляризации составила 165°. Практически одновременно с работой [1], в 1996 году, была опубликована статья С.А.Соколова [3], в которой рассмотрено проявление эффектов Керра и Фарадея в ОК.

Однако первое поколение когерентных систем связи, которое активно исследовалось в конце 1990-х, не нашло практического применения, а на работу ВОЛС с системами на основе амплитудной модуляции и прямого детектирования грозовые разряды не оказывают существенного воздействия. Поэтому работы [1-3] были практически не замечены научным и инженерным сообществами.

Новое поколение когерентных систем связи, использующее цифровую обработку сигналов (DSP), оказалось исключительно эффективным, быстро стало широко применяться на практике и обеспечило значительное увеличение пропускной способности волоконно-оптических линий и сетей связи. Благодаря использованию поляризационного мультиплексирования и многоуровневых квадратурных форматов модуляции канальная скорость была увеличена с 10 Гбит/с сначала до 100 Гбит/с, а затем до 400 Гбит/с и продолжает возрастать. Важно отметить, что для работы когерентных систем связи не требуется использование компенсаторов дисперсии на физическом уровне благодаря электронной ее компенсации, осуществляемой в блоке DSP.

Однако в процессе эксплуатации у когерентных систем связи, использующих инфраструктуру воздушных линий электропередач (ВОЛС-ВЛ, ВОЛС по высоковольтной линии), обнаружился один недостаток. В канале когерентной системы передачи в те периоды времени, когда воздушная ВОЛС оказывается в зоне грозового фронта, возникают ошибки. Сегодня природа этого явления в целом понятна: во время грозы удар молнии формирует в волокне сильное продольное магнитное поле, изменение которого, в свою очередь, приводит к вращению состояния поляризации оптического сигнала (SOP) и появлению ошибок на приемной стороне [1-5]. Причина возникновения ошибок - недостаточная скорость компенсации в DSP сильных вращений SOP, вызванных магнитным полем при ударах молнии.

В работах [4, 5] была измерена динамика параметров Стокса в проложенных ВОЛС. В [4] максимальная измеренная угловая скорость изменения состояния поляризации равнялась 5,1 Мрад/с. Близкое максимальное значение (5,3 Мрад/с) за один сезон наблюдений зарегистрировано в работе [5]. Кроме максимальной скорости изменения тока молний, на величину угловой скорости изменения SOP также влияют другие факторы, такие как конструкция кабеля и методы его заземления.

Для устранения прерывания в работе когерентных систем связи из-за ударов молнии возможны два подхода: разработка более скоростных цифровых систем обработки информации для когерентных приемников (DSP) и конструирование новых типов кабеля, наведенное магнитное поле в которых значительно меньше, чем в использующихся сегодня конструкциях.

Как будет показано ниже, наиболее эффективный путь окончательного решения проблемы прерывания связи из-за ударов молнии заключается в сочетании двух указанных подходов.

Разработка когерентных приемников с увеличенной скоростью компенсации вращения поляризации

Наиболее важная характеристика молнии – производная силы ее тока по времени (крутизна). Эта величина достигает максимума на переднем фронте молнии (рис.1).

В типовой одноповивной конструкции кабеля электрический ток I порождает магнитное поле индукцией В из-за наличия скрутки в грозотросе, внутри которого располагается оптический кабель:

$$B = \mu_0 n I, \qquad (1)$$

где n – плотность витков (n = 1/d, d – шаг скрутки),

µ0 - магнитная проницаемость вакуума [4π·10⁻⁷ Гн/м].

В соответствии с эффектом Фарадея магнитное поле вызывает изменение состояния поляризации на выходе из ВОЛС. В приближении изотропного волокна и линейной поляризации света угол поворота поляризации Θ описывается хорошо известной формулой:

$$\Theta = VBL = \mu_0 V nIL = \mu_0 V NI, \qquad (2)$$

- где N полное число витков на участке между опорами линии,
- V постоянная Верде телекоммуникационного волокна (V = 0,53 рад \cdot Tл⁻¹ \cdot м⁻¹).

При типичных параметрах ОКГТ и молнии (шаг скрутки 0,2 м, расстояние между опорами 150 м, ток молнии 20 кА) поворот плоскости поляризации световой волны превышает 10 рад! На переднем фронте импульса тока молнии (длительностью 1-20 мкс, см. рис.1) быстрые изменения тока dI/dt приводят к вращению состояния поляризации со скоростью от 0,5 до 10 Мрад/с [5]. В [6] приводятся близкие значения: средние величины токов молнии (в пике) составляют около 30 кА при крутизне фронта тока до 24 кА/мкс.

Влияние быстрого изменения SOP на работу когерентных систем связи экспериментально исследовано в [5]. В этой работе измерена зависимость требуемого оптического отношения сигнал/шум (OSNR) от угловой скорости вращения SOP в двух режимах работы: с выключенным и включенным алгоритмом компенсации вращения SOP.

Требуемый OSNR в DWDM-линиях

Из-за шума усиленного спонтанного излучения (ASE), который вносится оптическими эрбиевыми усилителями в протяженных многопролетных DWDM-линиях, происходит уменьшение OSNR. Предельное значение, до которого может уменьшиться OSNR в линии без ущерба для работы системы связи, называется требуемым OSNR. Чем меньше это значение, тем лучше.

В отсутствии алгоритмов компенсации вращения SOP штраф (увеличение требуемого OSNR) превышает 4 дБ уже при угловой скорости 2 Мрад/с. Использование алгоритмов быстрой компенсации вращения поляризации позволило существенно уменьшить штраф от воздействия молний (см. рис.2).

Частота гроз и среднее количество гроз в месяц сильно различаются по географическим регионам и сезонам. В областях с частыми грозами наблюдается до 70 молний на 1 кв. км в год. В европейской части России средняя частота молний значительно меньше: примерно 3–5 на 1 кв. км [7]. Если считать, что грозотрос собирает все молнии в полосе 100 м вдоль линии, то получаем площадь 100 кв. км. Иными словами, в ВОЛС с ОКГТ длиной 1000 км попадает примерно 500 молний в год при частоте до 5 молний/год на 1 кв. км.

Без использования алгоритма подавления вращения SOP уже при скорости вращения поляризации 2 Мрад/с штраф превышает 3 дБ, что больше эксплуатационного запаса. В результате частота прерывания связи из-за ударов молний становится недопустимо высокой даже в регионах со средним уровнем грозовой активности.

С использованием алгоритма компенсации быстрого вращения SOP только малая часть молний вызывает вращение поляризации со скоростью более 6 Мрад/с, создающее штраф по OSNR более 1,5 дБ. Однако число таких событий, которое может достигать одного в три месяца, остается недопустимо большим. В такой ситуации, чтобы избежать прерывания связи, необходимо при проектировании закладывать дополнительный запас по OSNR (порядка 2 дБ), что в конечном счете приводит к удорожанию ВОЛС.

По разным оценкам, увеличение запаса на 2 дБ может привести к росту стоимости кабельной инфраструктуры ВОЛС на 10–20% в зависимости от направленности предпринимаемых к улучшению усилий. К примеру, уменьшение затухания в кабеле на величину 2 дБ в типичном усилительном пролете в 100 км потребует перехода от стандартного оптического волокна (OB) к OB с пониженным затуханием, что приведет к увеличению стоимости линейно-кабельных сооружений примерно на 10–15%.

Устранить требование на использование дополнительного запаса по OSNR для защиты от

прерываний связи при ударах молнии позволяет применение в ВОЛС-ВЛ оптического кабеля в грозотросе специальной конструкции, что обеспечивает снижение величины магнитного поля в ОВ примерно на порядок [8].

Оптимизация конструкции ОКГТ для ослабления воздействия импульсного тока от удара молнии на работу когерентных систем связи

Типовые современные ОКГТ состоят из центральной трубки из нержавеющей стали (SST) с волокном в гидрофобном геле, которая окружена одним или несколькими повивами стальных проволок, плакированных алюминием и/или алюминиевых проволок (рис.3).

SST главным образом обеспечивает защиту OB от воздействия факторов окружающей среды и механических факторов, создаваемых внешними повивами. Стальные проволоки в повивах противостоят воздействию растягивающих усилий, алюминиевые проволоки работают как проводники импульсных токов, создаваемых ударами молний. Токи текут от точек наибольшего воздействия молнии до точек заземления на опорах и подстанциях ВЛ.

Рис.3. Конструкции ОКГТ с одним (а) и двумя (б) повивами: 1 – оптические волокна; 2 – стальная трубка, заполненная гидрофобным гелем; 3 – повив из стальных проволок, плакированных алюминием и/или проволок из алюминиевого сплава

Токи порядка 100 кА, создаваемые ударами молний, не только приводят к нагреву токопроводящих элементов кабеля, но и формируют

ООО "КОМПЕТО" РФ 394053, г. Воронеж ул. Генерала Лизюково, дом 17, офис 7

Волоконно-оптические кабели

 Конструирование и продажа оптического кабеля;
Проведение заводских приемочных испытаний поставляемого кабеля по ГОСТ Р МЭК 794-1-93
на соответствие Правилам применения оптического кабеля;
Спиральная арматура, все виды крепежной арматуры:

собственного производства и ведущих производителей;

• Оконечное пассивное оборудование;

Инструменты и измерительная техника;
Всё для сетей PON.

Кабель произведен на территории Российской Федерации в полном соответствии с постановлением Правительства РФ от 17.07.2015 № 719

Звоните прямо сейчас! 8 800-3333-9-44;

www.competo.su

продольное импульсное магнитное поле внутри него. Этот эффект может быть понят, если представить кабель как соленоид из совокупности спирально скрученных проволок вокруг SST с небольшой переходной проводимостью.

Будем исходить из того, что амплитуда величины магнитной индукции в центральной части ОКГТ зависит от конструкции кабеля, в котором наружные повивы проволок ведут себя, как ряд соленоидов. Из простых физических соображений следует, что двухповивная конструкция при противоположном направлении скрутки может резко снизить величину магнитного поля в центре кабеля, создаваемого

ОКГТ под действием импульса тока для двух конструкций кабеля: OPGW1 – с одним повивом проволок; OPGW2 – с двумя повивами проволок

Рис.6. Скорость вращения оси поляризации в волокне ОКГТ под действием импульса тока для двух конструкций кабеля: OPGW1 – с одним повивом проволок; OPGW2 – с двумя повивами проволок ударом молнии, и тем самым уменьшить скорость изменения SOP.

Для решения проблемы грозоустойчивости скоростных систем связи в работе [8] был предложен механизм компенсации воздействия молнии за счет использования в конструкции ОКГТ дополнительного повива проволок, имеющего встречное направление по отношению к первому. При этом происходит взаимная компенсация противоположно направленных магнитных полей, а значит, и степень влияния на ОВ. Максимальная компенсация полей происходит при оптимальном подборе конструктивных параметров ОКГТ: шагов повива, материалов проволок и их диаметров.

Эти предположения были проверены экспериментально на установке, схема которой приведена на рис.4. На испытательном стенде на изолированных подвесах размещены в натянутом горизонтальном состоянии два образца ОКГТ, каждый длиной 98 м. Импульсный ток формируется конденсаторным источником тока (U = 24 B; C = 0,1 Φ) с симисторным управлением с регулировкой силы тока при помощи магазина сопротивлений (0,1-1,0 Ом), форма тока разряда регистрируется с помощью USBосциллографа. Тестовый непрерывный сигнал на длине волны 1550 нм подается от лазерного оптического источника EXFOFLS600 на вход первого волокна ОКГТ длиной примерно 100 м. Все 12 волокон типа G.652 в каждом из испытуемых кабелей сварены в круговой шлейф, общая длина OB, подверженная воздействию тока разряда, составляет 1175 м. Состояние поляризации на выходе шлейфа из 12-ти волокон измеряется анализатором SOP Keysight N7781N.

Длительность фронта менялась в зависимости от собственных параметров кабеля и величины гасящего резистора и составляла 0,3-1,2 мс, длительность импульса составляла 80-100 мс. Испытания проводились при восьми значениях тока разряда через кабели в диапазоне от 30 до 160 А.

Исследовалась скорость изменения SOP при заданных параметрах импульса тока в ОКГТ одноповивной и двухповивной конструкций. Скрутка в двухповивном варианте осуществлялась во встречных направлениях. Испытания проводились с использованием типовых ОКГТ без оптимизации конструкции.

Анализатор поляризации регистрирует на сфере Пуанкаре движение точки, характеризующей поляризацию выходного излучения,

«T8» — российский разработчик и производитель телекоммуникационного оборудования спектрального уплотнения (DWDM) для оптических сетей связи.

РЕШЕНИЯ Т8 ДЛЯ ОПТИЧЕСКИХ СЕТЕЙ:

- МАГИСТРАЛЬНЫЕ DWDM-СЕТИ
- РЕГИОНАЛЬНЫЕ И ГОРОДСКИЕ ВОЛС
- ДАТА-ЦЕНТРЫ
- ТРАНСПОРТНЫЕ СЕТИ 5G
- ТЕХНОЛОГИЯ «ALIEN WAVELENGTH»

МУЛЬТИСЕРВИСНАЯ DWDM-ПЛАТФОРМА «ВОЛГА»

- БОЛЕЕ 100 БЛОКОВ ДЛЯ ПОСТРОЕНИЯ ТРАНСПОРТНОЙ ОПТИЧЕСКОЙ СЕТИ
- ПОСТРОЕНО СВЫШЕ 82 000 КМ ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ
- УСТАНОВЛЕНО НЕСКОЛЬКО МИРОВЫХ РЕКОРДОВ

```
T8.RU +7 (499) 271 61 61
```

info@t8.ru

а также временные зависимости параметров Стокса, по которым вычислялся угол вращения оси поляризации под действием импульса тока. На рис.5 и 6 показаны временные зависимости угла поворота оси поляризации и скорости ее вращения соответственно. Для наглядности величины даны по модулю, начальные фазы приравнены к нулю, графики совмещены к единому времени начала действий импульсов. Моменты начала фронтов импульсов на рис.5 и 6 совпадают.

Анализ результатов экспериментов показывает, что при сопоставимых воздействиях силы тока в импульсе (83 А и 91 А для одноповивного и двухповивного образцов соответственно) угол поворота оси поляризации в двухповивном ОКГТ в 8,3 раза меньше, чем в одноповивном.

При этом скорость вращения поляризации меньше в 3,4 раза, что обусловлено различной крутизной фронтов импульсов тока из-за разницы параметров ОКГТ: погонного сопротивления и индуктивности токонесущих элементов кабеля. Если произвести пересчет с учетом различий в крутизне фронтов импульсов, скорость вращения окажется сниженной примерно на ту же величину (8,3 раза).

Таким образом, несмотря на то, что двухповивная конструкция не была оптимизирована для минимизации значения магнитной индукции в сердечнике при протекании импульсного тока через ОКГТ, показано, что наличие в конструкции двух повивов проволок, скрученных в противоположных направлениях, значительно ослабляет эффект изменения SOP при протекании импульсного тока по кабелю. Соответственно, можно ожидать дальнейшего увеличения эффекта этого ослабления при оптимизации параметров конструкции.

Заключение

Результаты проведенных экспериментальных исследований показывают, что оптимальное решение проблемы прерывания связи при попадании молнии в грозотрос заключается в сочетании использования алгоритмов быстрой компенсации вращения SOP с использованием оптимальной конструкции ОКГТ, ослабляющей магнитное поле в оптических волокнах.

В соответствии с имеющимися экспериментальными данными и оценками такое сочетание обеспечивает стойкость к 99,9% ударов молний. Однако, как и во всех случаях с редкими случайными событиями, желательно проведение длительных полевых испытаний для получения информации о необходимой скорости работы алгоритмов быстрой компенсации вращения SOP в ОКГТ различных конструкций.

Поскольку время жизни оптической кабельной инфраструктуры превышает 25 лет, можно прогнозировать, что за это время произойдет модернизация систем связи с переходом от скорости 100 Гбит/с (формат QPSK) к 400 Гбит/с и более (форматы 8QAM, 16QAM и выше). Работа высокоскоростных систем (400 Гбит/с и выше) еще более восприимчива к быстрым поворотам поляризации, вызванным молнией. С учетом этого использование оптимизированных конструкций ОКГТ, ослабляющих магнитное поле в оптических волокнах, становится еще привлекательней.

<u>ЛИТЕРАТУРА</u>

- 1. Kurono M., Isawa K., Kuribara M. Transient state of polarization in optical ground wire caused by lightning and impulse current // International Symposium on Polarization Analysis and Applications to Device Technology. – International Society for Optics and Photonics, 1996. Vol. 2873. PP. 242-245.
- Kurono M., Kuribara M., Isawa K. Field measurements and a study of transient state of polarization produced in OPGW by lightning // Electrical Engineering in Japan. 1999. Vol. 128. No. 4. PP. 55-64.
- 3. Соколов С.А. Эффекты Керра и Фарадея в оптическом кабеле // Электросвязь. 1996. № 4.
- Charlton D. et al. Field measurements of SOP transients in OPGW, with time and location correlation to lightning strikes // Optics Express. 2017. Vol. 25. No. 9. PP. 9689-9696.
- Конышев В.А. и др. Влияние ударов молнии на работу когерентной системы связи на основе ВОЛС-ВЛ // Прикладная фотоника. 2020. Т. 7. Вып. 2. С. 118-129.
- Rakov V.A. et al. CIGRE technical brochure on lightning parameters for engineering applications // 2013 International Symposium on Lightning Protection (XII SIPDA). IEEE, 2013. PP. 373-377.
- The Optical Networking and Communication Conference & Exhibition OFC-2016. Coriant White Paper. Lightning Strikes and 100G Transport 74C.0133. Rev. A 03/16.
- 8. Абаев Р.Р., Фролов И.В., Акопов С.Г. Оптический кабель в грозозащитном тросе // Патент РФ № 2688897. 2019. Бюл. № 15. (После коррекции Бюл. № 19).